Decentralised Multi-Agent Reinforcement Learning for Dynamic and Uncertain Environments

نویسندگان

  • Andrei Marinescu
  • Ivana Dusparic
  • Adam Taylor
  • Vinny Cahill
  • Siobhán Clarke
چکیده

Multi-Agent Reinforcement Learning (MARL) is a widely used technique for optimization in decentralised control problems. However, most applications of MARL are in static environments, and are not suitable when agent behaviour and environment conditions are dynamic and uncertain. Addressing uncertainty in such environments remains a challenging problem for MARL-based systems. The dynamic nature of the environment causes previous knowledge of how agents interact to become outdated. Advanced knowledge of potential changes through prediction significantly supports agents converging to near-optimal control solutions. In this paper we propose P-MARL, a decentralised MARL algorithm enhanced by a prediction mechanism that provides accurate information regarding up-coming changes in the environment. This prediction is achieved by employing an Artificial Neural Network combined with a Self-Organising Map that detects and matches changes in the environment. The proposed algorithm is validated in a realistic smart-grid scenario, and provides a 92% Pareto efficient solution to an electric vehicle

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Reinforcement Learning in Multiagent Coalition Formation

In this paper we investigate the use of reinforcement learning to address the multiagent coalition formation problem in dynamic, uncertain, real-time, and noisy environments. To adapt to the complex environmental factors, we equip each agent with the case-based reinforcement learning ability which is the integration of case-based reasoning and reinforcement learning. The agent can use case-base...

متن کامل

Multi-Agent Learning Methods in an Uncertain Environment

Learning in multi-agent environments constitutes a research and application area whose importance is broadly acknowledged in artificial intelligence. There is a rapidly growing body of literature on multi-agent learning. In this paper, the multi-agent learning methods in an uncertain environment are addressed. The presented methods are not exhaustive, but they highlight the major methods used b...

متن کامل

Learning Algorithms for Software Agents in Uncertain and Untrusted Market Environments

The problem of how to develop algorithms that guide the behaviour of personal, intelligent software agents participating in electronic marketplaces is a subject of increasing interest from both the academic and industrial research communities. Since a multi-agent electronic market environment is, by its very nature, open, dynamic, uncertain, and untrusted, it is very important that participant ...

متن کامل

A Self-organizing Multi-agent System for Adaptive Continuous Unsupervised Learning in Complex Uncertain Environments

Introduction. Continuous learning and online decisionmaking in complex dynamic environments under conditions of uncertainty and limited computational recourses represent one of the most challenging problems for developing robust intelligent systems. The existing task of unsupervised clustering in statistical learning requires the maximizing (or minimizing) of a certain similarity-based objectiv...

متن کامل

Learning to Communicate with Deep Multi-Agent Reinforcement Learning

We consider the problem of multiple agents sensing and acting in environments with the goal of maximising their shared utility. In these environments, agents must learn communication protocols in order to share information that is needed to solve the tasks. By embracing deep neural networks, we are able to demonstrate endto-end learning of protocols in complex environments inspired by communica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1409.4561  شماره 

صفحات  -

تاریخ انتشار 2014